3,222 research outputs found

    Mitochondrial metagenomics: letting the genes out of the bottle

    Get PDF
    ‘Mitochondrial metagenomics’ (MMG) is a methodology for shotgun sequencing of total DNA from specimen mixtures and subsequent bioinformatic extraction of mitochondrial sequences. The approach can be applied to phylogenetic analysis of taxonomically selected taxa, as an economical alternative to mitogenome sequencing from individual species, or to environmental samples of mixed specimens, such as from mass trapping of invertebrates. The routine generation of mitochondrial genome sequences has great potential both for systematics and community phylogenetics. Mapping of reads from low-coverage shotgun sequencing of environmental samples also makes it possible to obtain data on spatial and temporal turnover in whole-community phylogenetic and species composition, even in complex ecosystems where species-level taxonomy and biodiversity patterns are poorly known. In addition, read mapping can produce information on species biomass, and potentially allows quantification of within-species genetic variation. The success of MMG relies on the formation of numerous mitochondrial genome contigs, achievable with standard genome assemblers, but various challenges for the efficiency of assembly remain, particularly in the face of variable relative species abundance and intra-specific genetic variation. Nevertheless, several studies have demonstrated the power of mitogenomes from MMG for accurate phylogenetic placement, evolutionary analysis of species traits, biodiversity discovery and the establishment of species distribution patterns; it offers a promising avenue for unifying the ecological and evolutionary understanding of species diversity

    An Efficient Parallel Solver for SDD Linear Systems

    Full text link
    We present the first parallel algorithm for solving systems of linear equations in symmetric, diagonally dominant (SDD) matrices that runs in polylogarithmic time and nearly-linear work. The heart of our algorithm is a construction of a sparse approximate inverse chain for the input matrix: a sequence of sparse matrices whose product approximates its inverse. Whereas other fast algorithms for solving systems of equations in SDD matrices exploit low-stretch spanning trees, our algorithm only requires spectral graph sparsifiers
    • …
    corecore